Convex billiards on convex spheres

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Conjugacy of Convex Billiards

Given a strictly convex domain Ω ⊂ R2, there is a natural way to define a billiard map in it: a rectilinear path hitting the boundary reflects so that the angle of reflection is equal to the angle of incidence. In this paper we answer a relatively old question of Guillemin. We show that if two billiard maps are C2-conjugate near the boundary, then the corresponding domains are similar, i.e. the...

متن کامل

On nonconvex caustics of convex billiards

Oliver Knill July 29, 1996 Abstract There are billiard tables of constant width, for which the billiard map has invariant curves in the phase space which belong to continuous but nowhere di erentiable caustics. We apply this to construct ruled surfaces which have a nowhere di erentiable lines of striction. We use it also to get Riemannian metrics on the sphere such that the caustic belonging at...

متن کامل

Nearly round spheres look convex

We prove that a Riemannian manifold (M, g), close enough to the round sphere in the C topology, has uniformly convex injectivity domains — so M appears uniformly convex in any exponential chart. The proof is based on the Ma–Trudinger–Wang nonlocal curvature tensor, which originates from the regularity theory of optimal transport.

متن کامل

Maximizing Orbits for Higher Dimensional Convex Billiards

The main result of this paper is, that for convex billiards in higher dimensions, in contrast with 2D case, for every point on the boundary and for every n there always exist billiard trajectories developing conjugate points at the n-th collision with the boundary. We shall explain that this is a consequence of the following variational property of the billiard orbits in higher dimension. If a ...

متن کامل

Periodic trajectories in 3-dimensional convex billiards

We give a lower bound on the number of periodic billiard trajectories inside a generic smooth strictly convex closed surface in 3-space: for odd n, there are at least 2(n − 1) such trajectories. Convex plane billiards were studied by G. Birkhoff, and the case of higher dimensional billiards is considered in our previous papers. We apply a topological approach based on the calculation of cohomol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire

سال: 2017

ISSN: 0294-1449

DOI: 10.1016/j.anihpc.2016.07.001